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INTRODUCTION

To date, the most studied meson-nucleus strong interactions are
those induced by pilons. The study of these interactions has
provided us valuatle information concerning the propagation of
mesons in general, and pions in particular, in a many-body nuclear
envirenment; information that will greatly facilitate the study of
other meson-nucleus systems.

The study of n mesons in nuclei is of fundamental interest.
This is because the structure of the n meson 1is still not fully
understood. The simple SU(6) quark model cannot account for the
mass difference betveen N and N’ mesons. Studies of eta-nucleon
!nteractions will provide useful information that might shed light
on the structure of n. Because it is nearly impossible to produce
an n beam, the nucleus is *he only laboratory for n-nucleon physica..

The threshold for the reaction n"p#nhn on a free nucleon is at
plon kinetic energy T, =561 MeV or total c.m. energy {su1488 MeV.
The cross section rises rapidly with pion energy and reaches a
maximum (~2.5 mb) at Tn-661 MeV ({;-1550 MeV); an energy that s
only slightly higher than the limit of existing pion factories. The
threshold for the reaction pp#ppn is at proton kinetic energy
Tpm1.26 GeV. For simple kinematical reasons, the threshold for
nuclear (n,n) and (p,pn) reactions are much lover. Because an
understanding of the NN+NNn reac.ions depends on an understanding of
AN+NN reactions, in my opinion, the use of a high-intensity pion
heam with energias hetwean 0.6 and 1.0 GeV represents a logical

first choice for the intial-stage investigation of n’s in nuclei.

ETA-NUCLEON INTERACTION

For nN c.m. @energies between 1470 and 1C00 MeV, there are only
three {important reaction channels: nN elastic scattering, nN-nnN,
and NN<nN. Bhalerao and Liu have developed a coupled-channel isubar
model to study simultaneously all three reaction channels.!
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They have found that in this energy region only one isobar has
to be considered for each given meson-nucleon partial-wave
amplitude; they are N*(1535) for the s-wave, N*(1440) for the
p-vave, and N*(1520) for the d-wave amplitude. The coupled-channel
analysis gives the following ratios betwveen various coupling
constants involving the N*(1535):

EnNN+/&nNg = 0.55; (la)
and

gnNN*/gnNN* = 1.69. (1b)
The same analysis also gives

EnNa/8nas ™ 1.9. (1lc)
which is very close to the value (~2.1) given by the quark model.
Because?

EnNN/8nNa = 0.59 (2a)
and

Envn/8rin = 171 (2b)
we deduce from Eqs.(la) and /2a) that

EnNN* = EnNN© (3a)
Using Eqs.(1b),(2b), and (3a), ve further deduce that

EnNNx = BynNN- (3b)

It is 1interesting to see to what extent these ratios would be
modified in nuclear teactions where the formation of an on-shell
N*(1535) is energetically possible.

THEORY OF ETA-MESIC NUCLETY

Various analyses of the nN+nN reaction indicete that the
lov-energy NN interacticn is attractive.!'’ The coupled-channsl
fcobar model of Ref.l is particularly suitable for calculating nN
interactions in a nucleus because it contains strong-interaction
form factors and satisfies off-shell unitarity. For this reason, I
shall only discuss the calculations based on that model.

In the isotar model, the radial part of the nN scattering
amplitude is given by!
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In Eq.(4), v is the strong-interaction form factor. The g and A
are, respectively, the coupling constant and range parameter. The
mg is the bare mass of the isobar (denoted «). The Z:n, 8%, and tg
are the self-energies of a, which arise from the coupling of the
isobar to the naN, nN, and nN channels, respectively. The sum of
the imaginary parts of [ gives the width of the isobar [,» while the
sum of the bare mass and the real parts of [ gives the physical
isobar mass L i.e,

mg + L%y « L5+ I} = me(Ys)-1r (Ts)/2 . (5)

Ve note that m, and Fa are energy-dependent. The My & and A of
the coupled-channel theory of Ref.l are determined from fitting only
the nN phase shifts. The theory is able to make a good prediction
for t'e n"ponn differential cross sections., It also gives an nN
scattering length ao-O.ZR +1 0.19 fm, corresponding to an attractive
s-wvave NN interaction.

Haider and Liu have constructed a first-order optical potential
for n-nucleus scattering,! using the nN interaction of Ref.l. They
have noted: (a) after including the s-, p-, and d-wvave NN
interactions, the n-nucleus interaction remains attractive at low
energies; (b) although the strength of the nN attraction 1is not
sufficient to bind the n to a single nucleon, it can bind an n into
a nuclear orbital in a nucleus having a mass number A > 10. In
order to see hov the size of a nucleus can help develop an n-nucleus
bound state, let us examine the case with uniform nuclear density.
In this latter case, the condition for the nucleus to huve one

s-wvave bound state is simply4



9X > Re(ay) > X, (6)

where aj is the NN scattering length and X-nZRA‘1(1+mh/mN)'1/12 with
My My and R being, respectively, the n mass, the nucleon mass, and
the nuclear radius. The depth of the n-nucleus optical potential

well is

V-—197.3X(3Aao/2R3)(1+mn/mN)(mn+mA)/(mnmA) [MeV], 7

vhere m,=Amy is the mass of the nucleus, and the unit of the masses
is fm~l. In the following table, we give the bound--state conditions

and the poiential wells calculated with the a°-0.28 + 1 0.19 fm.

Nucleus V  [MeV] 9X [fm] X [fn]

p -5.5-1 3.7 11 1.23
614 -8.9-4 6.0 2.5 0.26
12¢ -17-i 12 1.3 0.14
160 -19-1 13 1.0 0.11
10ca  -20-1 14 0.53 0.059
902r  -24-1 16 0.29 0.032
208pp  -29-1 20 0.15 0.017

Using Eq.(6), we see that there is one s-vave n-nucleus bound state
for 10<A<90 and two for A>90. This qualitative result has be>n
confirmed by our detailed calculations that make use of realistic
nuclear densities, and full nN interactions. The calculated binding
erergiee  are chown in Fig.1, The calenlare: widths of ground-state
n-mesic nuclei range from ~7 MeV in 12C, ~10 MeV in 160, to 20 MeV
in 208pb (Ref.l), which are compatible with the imaginary parts of
the equivalent square-vell potentiai in the table. Ve emphasize
that the coupled-channel analysis of Ref.l fits the S11 nN phase
shifts, Consequently, the a  used in our analysis 1is consistent
with the decay width (100 MeV) of the N*(1535) in free space. Ve
thus conclude that once a hound state is formed, its width is mainly
determined by the equivalent potential well and not by the



-5-

free-space width of the elementary mesan-nucleon resonance. in
addition, because the imaginary part of Zn vanishes at the threshold
energy, the actual imaginary part of the n optical potential is much
smaller than that implied by the use of a, and 2q.(7).
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Fig.l. Calculated n binding energies.

The n-nucleus interaction depends nonlinearly on 8%NN* because
in Eq.(4) both the numerator and the self-energy Zn in the
denominator are proportional to the 8%NN*' As a result of this
dependence, the i-nucleus bound state can only exist for limited
values of ErNN+ * In Fig.2, I present the calculated nN scattering
length a and the corresponding n binding energy B and half-width
/2 of the n-mesic nuclear ground state of 1%0 as functions of
EnNN*(1535) " The value of g determined in Ref.l is 0.7/ (indica‘ed
by a vertical arrow). It gives Re(ao)-O.ZB fm, B=2.4 MeV, and
[/2+5.2 MeV. The L and T increase rapidly with g. But, the bound
state ceases tc exist for g>0.9 because the nonlinear relation
between nN scattering amplitude and g? causes Re(ao), snd hence, the
n-nucleus attraction to decrease for g>0.85. Therefore, bound state
can only exist for g between 0.7 and 0.9. This narrow band of
allowved values of g provides the possibility to extract quite
accurately the nNN* coupling constant from experiments.
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HIGHER-ORDER SPREADING WIDTHS OF ETA-MESIC NUCLEAR STATES

Let us brir~fly examine eifects of true n absorption on the
wvidth of an eta-mesic nuclear state. For this purpose, it is useful
to compare pion absorption and eta absorption. Diagrams for these
absorption processes are shown in Fig.3.

(c)

/
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Fig.3. Contributions to the pion-nucleus or h-nucleus
optical potential from two-nucleon meson abgorption;

(a) plon absorption; (b) n absorption; and (c¢) "indirect”
n absorption. The wvavy, dashed, and solid lines denote,
respectively, the eta, pion, and nucleon.

Figure 3(b) corresponds to an n absorption after NN scattering.
Figure 3(c) corresponds to an "indirect” n absorption in the serse
that the n is first converted to a high-energy (~3M;) pion that is
subsequently absorbed. Detailed microscopic calculations of these
diagrams are in progress and vill be reported elsevhere. Hovever,
it is possible to give an order-of-magnitude estimate of the effect
of n absorption. The imaginary part of the second-order h optical
potential associated vith s-vave nh alsorption, due mainly to
Fig.3(b), is givan by

VW o= -4n Im(B]) [p(0) ]2, (8)
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vhere BQ is the absorption strength for n and may be estimated from

scaling the s-wave pion absorption strength Bg vith the relation
Im(52)=(gnNN*/gnNN)4 (3nNN/gnNN)2 Im(Bg). (9

Here Im(Bg)=0.04 Hﬁ4 is the pion absorption strength. Using
p(0)=0.17 fm"3 and Eqc.(2) and (3), one obtains |W|<1 MeV. A
similar estimate of the diagram in Fig.3(c) again leads to a |W| of
~1 MeV. Thus, at the threshold, the imaginary part of n-nucleus
optical potential due to n absorption by two nucleons is much
smaller than that due to one-nucleon processes.

EXPERIMENTAL SEARCH
An experiment was performed at the AGS of Brookhaven National
Laboratory.® The reaction used was

nt o+ 240 p e [0+ ZA-D)] = p o+ NA-D).

If an n-mesic nucleus is formed, then a nearly monoenergetic peak
will be seen in the outgoing proton spectrum at a well-defined
energy. In particular, the peax that corresponds to the formation
of a bound state of n, after having ejected a least-buund neutron,
will be situated outside the kinematical 1limit of quasi-free n
production and by a distance equal to the binding energy of the n.
In Fig.4, 1 showv a predicted proton spectrum for the 160(n*,p)X
reaction at a pion momentum of 740 MeV/c, vhere the abscissa is
converted to che binding energy of n.(Ref.6.) Because the width of
1%0 is ~10 MeV, the two peaks associated with the ejuction of 1p,;,,
and lpy,, neutrons cannot be separated in our calculations. The
actual experiment was performed with 800U-MeV/c incident n* on
lithium, carbon, and oxygen. Data analysis is still in progress.
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Fig.4. Calculated proton spectrum.

A second experiment will be carried out at LAMPF.? 1In this
experiment one will detect in coincidence the ejected fast proton,
and the decay product of the n-mesic¢ nucleus, using a BGO ball. The
corresponding reaction is

n*+%A"P*rZ1(A—1)"p+K°+p+X,
where X denotes all the undetected particles. The n° and the second
proton are coming from the elementary process nP°UMd.pun0.p. This
triple coincidence measurement should greatly reduce the background

events and provide information on the decay of an h-mesic nucleus.

OTHER EXPERIMENTAL POSSIBILITIES

Because the n meson can also be produced in high-energy pp
collisions, it will be interesting to look for clues of n-mesic
nueclaus  formation 1in proton-nucleus reactions. Because small n
momenta are favorable to such formation, it is preferable that one
works in an energy region where this kinematics can be realized. 1In
Figs. 5 and 6, I present plots indicating the minimum n momentum
that will be produced in varjous nuclear reactions.
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Fig.5 The lowest n momenta produced in the p+n + d+n and
p+3He » ‘He+n reactions as a function of proton kinetic energv.
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Fig.6 The lowest n momenta produced in the p+d -+ 3He+n and
d+p + YHes+n reactions as a function of proton (upper abscissa)
and deutron (lower abscissa) kinetic energies, respectively.
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The existence of a zero-momentum of n in Figs.5 and 6 indicates that
the inclusive (p,d), (p,*He), (p, He), (d,3He) reactions on
medium-mass nuclei and at appropriate energies are ideal to the
search for nh-mesic nuclei as well as to the study of low-energy nN
interaction.

SUMMARY AND PERSPECTIVES

I have discussed the possibility of producing h-mesic nurlei by
the use of pions. If the.e nuclei are observed experimentally, then
the binding energies of the n in this new nuclear matter can be used
to extract accurately the nNN* coupling constant in a nucleus.

Although I did not have time to discuss in detail various other
interesting aspects of n’s in nuclei, I would lire to mention two of
them:

(a) Because the basic nNnN reaction is dominated by a spin
nonflip interaction, the (n,n) reaction represents an excellent tool
to study OT=1 and 4S=0 nuclear transitions;

(b) The existence of n-mesic nucleus can lecad to a nev class of
nuclear phenomena, nh-mesic compound-nucleus resonances.(Details can
be found in Ref.8.) An awareness of this phenomenon could be
baneficial to the aralysis of nuclear reactions at energles above
the n production threshold.

Finally, I would like to emphasize that a very broad scope of
new physics can be brought 1into place by studying n mesons in
nuclei, and such studies require only a medest upgrading of existing
meson facilities.

REFERENCES

(1) R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54, 865 (1985).

(2) R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. Cl49, 1
(1987).

(3) S.F. Tuan, Phys. Rev. 139, 1393B (1965).



(4)
(3)

(6)
{7)
(8)

-12-

Q. Haider and L.C. Liu, Phys. Lett. 172B, 257 (1986).

AGS Experiment 828, spokesmen: L.C. Liu, H.0. Funsten, and
R.E. Chrien.

L.C. Liu and Q. Haider, Phys. Rev. C 34, 1845 (1986).

LAMPF Experiment 1022, spokesmen: B.J. Lieb and L.C. Liu.

Q. Haider and L.C. Liu, "Nuclear Bound States of the n° Meson and
Pion Double Charge Exchange Reactions”, Phys. Rev. C (to be
published).



